Closing Wed: HW_8A,8B,8C (8.1, 9.1) Midterm 2 will be returned Tuesday

Any ideas on how we can approximate the length?

8.1 Arc Length

Goal: Given $\mathrm{y}=\mathrm{f}(\mathrm{x})$ from $\mathrm{x}=\mathrm{a}$ to $\mathrm{x}=\mathrm{b}$.
Want to find the length along the curve.

Break into n subdivision

$$
\Delta x=\frac{b-a}{n}, \quad x_{i}=a+i \Delta x
$$

Compute $y_{i}=f\left(x_{i}\right)$.

Compute the straight line distance from (x_{i}, y_{i}) to (x_{i+1}, y_{i+1}).

$$
\begin{aligned}
& \sqrt{\left(x_{i+1}-x_{i}\right)^{2}+\left(y_{i+1}-y_{i}\right)^{2}} \\
& =\sqrt{(\Delta x)^{2}+\left(\Delta y_{i}\right)^{2}} \\
& =\sqrt{(\Delta x)^{2}\left(1+\frac{\left(\Delta y_{i}\right)^{2}}{(\Delta x)^{2}}\right)} \\
& =\sqrt{1+\left(\frac{\Delta y_{i}}{\Delta x}\right)^{2}} \Delta x
\end{aligned}
$$

Note:

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y_{i}}{\Delta x}=\text { slope of tangent }=f^{\prime}(x)
$$

Therefore:

$$
\begin{gathered}
\text { Arc Length }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \Delta x \\
\text { Arc Length }=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
\end{gathered}
$$

Example:

Find the arc length of

$$
y=4 x-5 \quad \text { for }-3 \leq x \leq 2
$$

Good news:

We have a method to write down an integral for arc length and arc length gives distances on a curve which are important!

Bad news:

The arc length integral almost always is something that can't be done explicitly with our methods (so we have to approximate after we set it up).

There are a few unusual functions where the integral can be computed exactly by using clever algebra. You will see several of these in homework

8.1 HW questions

Find the arc length of

1. $y=4 x-5$ for $-3 \leq x \leq 2$.
2. $y=\sqrt{2-x^{2}}$ for $0 \leq x \leq 1$.
3. $y=\frac{x^{4}}{8}+\frac{1}{4 x^{2}}$ for $1 \leq x \leq 2$.
4. $y=\frac{1}{3} \sqrt{x}(x-3)$ for $4 \leq x \leq 16$.
5. $y=\ln (\cos (x))$ for $0 \leq x \leq \pi / 3$.
6. $y=\ln \left(1-x^{2}\right)$ for $0 \leq x \leq 1 / 7$.

Example: Find the arc length

$$
y=\frac{x^{4}}{8}+\frac{1}{4 x^{2}} \text { for } 1 \leq x \leq 2
$$

Example: Find the arc length

$$
y=\ln (\cos (x)) \text { for } 0 \leq x \leq \pi / 3 .
$$

Aside (don't need all this for this course) Arc Length (Distance) Function:

Arc Length is very important in motion (parametric) problems, which you will see a lot more of in Math 126:

$$
x=x(t), y=y(t)
$$

In this case, the same derivation from the beginning of class yields:

Arc Length $=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$
This gives the distance the object has traveled on the curve.

In motion problems we often use:

$$
s(t)=\int_{0}^{t} \sqrt{\left(x^{\prime}(u)\right)^{2}+\left(y^{\prime}(u)\right)^{2}} d u
$$

which gives the distance traveled from time 0 to time t. This is called the Arc Length (Distance) Function.

Simple Example:
Consider

$$
x=3 t, y=4 t+2
$$

where t is in seconds.
(a) Find the arc length from 0 to 10 sec .
(b) Find the arc length function.
(c) What is the derivative of the arc length function?

